

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 ## Set up Git on Windows

If you are on Windows, make sure that you configure Git to use linux line ending (LF) instead of windows line endings (CRLR) before checking out this repository on your local machine. If you fail to do so then the line endings will be converted to the usual windows default for all files including shell scripts and when those are then executed inside the Linux based devcontainer the scripts to load the database etc will fail.

To verify the line endings, open a file (e.g. the README.md file) and have a look at the VS Code status bar in the lower right corner. If the settings are correct it should show “LF”. If your line endings were switched by git to the windows ones then it will read “CRLF”

To make sure that Git will leave line endings alone and not convert them for you need to run two commands before checking out this git repo:

`powershell
git config --global core.autocrlf false
git config --global core.eol lf
`

VS Code will be perfectly able to handle files using the linux default LF only line ending character. Other, older text editors like Notepad might have an issue with this.

If other repositories you contribute to need to use crlf then do this on those other repositories (and see [more information on stackoverflow](https://stackoverflow.com/questions/2517190/how-do-i-force-git-to-use-lf-instead-of-crlf-under-windows)):

`powershell
git config core.eol crlf
`

 ## Supported browsers

As of 2023-02-18, we support the following browsers:

	Safari 11.1+ (earlier versions are missing support for [Object rest destructuring](https://caniuse.com/mdn-javascript_operators_destructuring_rest_in_objects))

	iOS Safari 11.3+ (earlier versions are missing support for [Object rest destructuring](https://caniuse.com/mdn-javascript_operators_destructuring_rest_in_objects))

	Chrome/Edge: 66+ (earlier versions are missing support for [Optional catch binding](https://caniuse.com/mdn-javascript_statements_try_catch_optional_catch_binding))

	Opera 53+ (since Opera 53 is based on Chromium 66)

	Firefox: 60+ (earlier versions are missing support for [importing modules](https://caniuse.com/es6-module))

Overall, [this caniuse link shows which browsers are supported](https://caniuse.com/async-functions,mdn-javascript_operators_destructuring_rest_in_objects,es6-module,mdn-javascript_statements_try_catch_optional_catch_binding) (scroll down to “Feature summary”).

“Most breaking” features

“Most breaking” features we use are:

	[Async functions](https://caniuse.com/async-functions), which introduce the keywords async and await.

	[Object rest destructuring](https://caniuse.com/mdn-javascript_operators_destructuring_rest_in_objects), which introduces expressions like const {a, …rest} = obj.

	[Optional catch binding](https://caniuse.com/mdn-javascript_statements_try_catch_optional_catch_binding), which allows for catch {} instead of catch (e) {}.
We don’t _have_ to use it, but Chrome < 66 is so uncommon now that’s it not a worry.

	[ES6 modules](https://caniuse.com/es6-module), where we use <script type=”module”> (in HTML) and import … from “…” (in JS)

Things will look a bit odd at times in browsers that don’t support the [CSS grid gap property](https://caniuse.com/mdn-css_properties_gap_grid_context), but things still work just fine.

Polyfills

We use polyfill.io (see site/SiteConstants.ts), so using modern methods like str.replaceAll() is fine as long as it’s included in the list of polyfilled functions.

Setting the Vite target

We have to be careful in increasing the vite.config.ts field build.target.

Dropping support for older browsers is fine, but it should be a conscious decision.

 # WIP

This document is work in progress. For now please check out the existing code to get a feeling for our coding style.

package.json style guide

We follow some conventions:

	camelCase the command names. This ensures that these command names are also valid identifiers and consistent with our TypeScript code.

	Use longer unique names like `buildSiteCss` instead of `style`. We have to rely on global string matches for finding uses in code, making them unique helps.

	Identify what “kind” of command your script is and choose an existing decorator, unless it’s of a new kind. Think of the “build” and “start” prefixes as function decorators and choose an appropriate one. For example, if your script starts a long lived process, it should be named something like startXXXServer; if it generates output to disk, something like buildXXX.

 # Visual Studio Code Devcontainer setup

This page describes how to run our develpment environment entirely within a VS Code devcontainer setup - i.e. without installing NodeJS, Mysql etc locally. All that is required is to have [VS Code](https://code.visualstudio.com/) with the [remote containers extension](https://code.visualstudio.com/docs/remote/containers) and the [docker runtime](https://www.docker.com/) installed.

⚠ If you are on Windows, make sure that you configure git to use linux line endings (LF) instead of windows line endings (CRLF) before checking out this repository on your local machine. Follow the [Set up git on windows](./before-you-start-on-windows.md) instructions.

Once you have the tools mentioned above installed, just open this repository in VS Code. You should see a notice in the lower left that asks if you want to open this again inside a devcontainer. Answer yes and it will spin that up. Note that the first time you run this it needs to download and ingest the database which takes 5-20 minutes. To see if the database loading has finished refer to the [Checking the docker compose logs](#checking-the-docker-compose-logs) section.

If you had the devcontainer setup running previously and get a message on the lower right asking to rebuild the devcontainer then confirm this to apply any changes to the configuration that have been made.

Once the database has been loaded run the following steps in VS Code’s terminal (i.e. the terminal running inside the devcontainer). On MacOS, the first run of this can be slow due to an issue with yarn and docker - if so just be patient.

`bash
make up.devcontainer
`

This will run [tmux](https://github.com/tmux/tmux/wiki/Getting-Started) and create 3 panels that you can switch between with <C-b>, n (i.e. press CTLR (on PC)/CMD (on Mac) and b, then release and press n). Mouse support is enabled so you should be able to scroll through the panels and click them in the bottom row. A short welcome message is printed on the initial pane - if you scroll up here you will see a quick cheatsheet with various commands.

Now navigate to http://localhost:3030/admin/charts in a browser and have a look at the admin interface. The default user account is admin@example.com with a password of admin

To stop the admin servers, press <C-b>, Q in the terminal to kill the window and end all 3 processes when you are done. Close VS Code to shut down all docker containers and free up the resources of running the MySQL docker container.

Accessing MySQL

If you want to access MySQL you have two options. ⚠ Note that depending on which one you choose, you will have to use different ports!

	From the terminal

In the VS Code terminal that executes inside the devcontainer, run the MySQL command line client:

`bash
mysql -h db -u grapher -pgrapher grapher
`

This will show a MySQL prompt. See the https://dev.mysql.com/doc/refman/8.0/en/getting-information.html for how to query the database in this interface.

	From a desktop application

For more complex interactions it can be useful to run a program like the free [DBeaver](https://dbeaver.io/) database manager. When you install this on your system, enter the following information when creating a connection to the database:

Setting | Value |

————- | ————————————————————— |

Database type | MySQL |

Server | localhost |

User | grapher |

Password | grapher |

Port | 3307 (<- this is different than the default to avoid conflicts) |

Database | grapher |

Running tests

To run our test suite you first need to build the TypeScript files into JavaScript and then run jest:

	Run buildTsc

`sh
yarn buildTsc
`

	Run jest

`sh
yarn testJest
`

Using storybook

Storybook allows you to interact with our Grapher and Explorer components visually in a browser and can be a great way to debug or to test new features.

	Run buildTsc

`sh
yarn buildTsc
`

	Run Storybook Server

`sh
yarn startStorybookServer
`

![Storybook](screenshots/storybook.png)

Checking the docker compose logs

This section explains how to check the logs for the database loading script that runs the first time you use this setup.

An important note first: when using the VS Code Devcontainers extension, there is difference between the terminal in VS Code and a normal terminal that you open on your computer (i.e. your normal Windows or Mac terminal). The VS Code terminal gives you a shell running inside the development container. It has access to all the tools like node, yarn etc that you need to compile and run the codebase. It does not have access to the docker runtime though which is running the container. A normal terminal is the opposite, it operates outside the container - it has access to the docker command line tools but not all the tools running inside the development container.

To check the status, make sure you run the following commands in a terminal outside your devcontainer, in the working directory root of this repository:

`bash
docker-compose -f docker-compose.devcontainer.yml logs -f
`

This will follow all log entries (i.e. it will print log statements while they happen) of all three containers: the app-1 container (your devcontainer with node, yarn etc), the db-1 container (MySQL), and the db-load-data container (that loads the data and then stops). On the first run of the devcontainer setup, this last container will download two gz files into the tmp-downloads folder and then ingest them into the MySQL database. This whole process can take between 5 and 20 minutes. When it is done you should see this message:

✅ All done, grapher DB is loaded ✅

 # Local development setup with MySQL and the Grapher admin

This page describes how to set up a MySQL database loaded with example charts so you can use the Admin UI to visually create and edit charts.

![admin-ui](./screenshots/admin-ui.png)

Prerequisites

This option uses make to spin up all the services with a single command, but it requires a few utilities to be installed:

	[Docker](https://www.docker.com/get-started)

	[Node.js and Yarn](./local-typescript-setup.md)

	[tmux](https://github.com/tmux/tmux/wiki/Installing#binary-packages)

If you’re using Windows, we recommend you use the Windows Subsystem for Linux, where you’ll require some additional utilities. Please also make sure to check out the [before you start on windows guide](before-you-start-on-windows.md). To install the additional tools, run the following in a WSL terminal:

`bash
apt install -y build-essential finger
`

Optional prequisites

If you want to work with the explorer admin then you need to clone the “owid-content” folder as a sibling to the owid-grapher. Note that this is not required just to create or edit single charts which is normally sufficient for development of new features or bug fixes.

`bash
git clone https://github.com/owid/owid-content
`

Starting our development environment

Make a copy of .env.example-grapher for the server to configure itself with.

`bash
cp .env.example-grapher .env
`

Then run:

`bash
make up
`

This should fire up a tmux console with 4 tabs:

	A tab that gives a brief overview of how to use this tmux setup

	A tab that outputs the Docker compose container logs

	A tab that shows the result of the TypeScript watch compiler process

	A tab that shows the output of the vite and admin server watch processes

The first time you run this it will take a while to download and set up the database (10-20 minutes is expected). Switch to the database tab and wait until you see this message:

`
✅ All done, grapher DB is loaded ✅
`

![Terminal screenshot of the running system](./screenshots/tmux-setup.png)

Now you can open http://localhost:3030/admin/charts and start creating charts. Any changes to the TypeScript code you make will be automatically compiled, but you will have to refresh your page to see the changes.

Inspecting the databases

For all operating systems, we recommend using [DBeaver](https://dbeaver.io/).

The MySQL server is exposed on port 3307 as opposed to port 3306 to avoid port conflicts with any local SQL clients you may have running.

Use this connection configuration:
key	value
---	—
host	localhost
port	3307
username	root
password	weeniest-stretch-contaminate-gnarl

(The root development password is set in this [docker-compose file](https://github.com/owid/owid-grapher/blob/master/docker-compose.grapher.yml#L40))

We also have [a schema diagram for reference.](screenshots/er_diagram.png)

Note that in the MySQL database that was set up, the data_values table is incomplete – it only contains data used in charts. In production, this table is >30GB (uncompressed) and contains unreviewed and undocumented data, so we currently don’t offer a full export of it.

Resetting your environment

If you’ve modified or broken your database and want to start over from scratch, you’ll need to clear the docker volumes that the database persists on.

To do so, get their names

`bash
docker volume ls
`

and remove them with

`bash
docker volume rm volume_name
`

The names of the volumes should usually be something like owid-grapher_mysql_data and owid-grapher_mysql_data_public.

You can also remove your local copies of the database exports if you want to download the latest version. Skip this step if you want your database to be exactly the same as it was on your last setup.

`bash
rm tmp-downloads/*
`

With that done, the next time you run make up, the database files will be re-downloaded.

A new database will then be created (expect another 10-20 minutes.)

 # Full wordpress setup

This page describes how to get the full setup of our site running locally including wordpress (and thus also allowing running the baking etc). Note that this setup requires pullung a database dump from our live server which only OWID staff can do. This setup thus only works for OWID staff.

This setup is very similar to the [Local setup with MySQL and grapher admin](docker-compose-mysql.md). Go to that document and make sure that the prerequisites are met.

Running the full setup

All you need to do now is to open a terminal and run

`bash
make up.full
`

The full setup includes an nginx server exposed at http://localhost:8080 that does some basic routing (/admin goes to the grapher admin running on your host, /wp/ goes to the php container running wordpress).

The most important URLs:

http://localhost:8080/admin - the grapher admin

http://localhost:8080/wp/wp-admin - the wordpress admin

Note that in the MySQL database that was set up, the data_values table will be incomplete – it will only contain data used in charts. In production, this table is >30GB (uncompressed) and contains unreviewed and undocumented data, so we currently don’t offer a full export of it.

If you’d like to interact with the databases, see the [inspecting and refreshing the databases](docker-compose-mysql.md#inspecting-the-databases) section of the prerequisite tutorial.

 ## Development server

To run the local development server you need to have a [working local TypeScript environment](local-typescript-setup.md) and a [mysql grapher database](docker-compose-mysql.md) with the our world in data content loaded.

Set up your .env file by copying the example:

`sh
cp .env.example .env
`

Then run the three development processes:

`sh
yarn startTscServer
yarn startAdminServer
yarn startViteServer
`

Or alternatively, you can also start all 3 processes in one terminal window with tmux:

`sh
yarn startTmuxServer
`

Then head to localhost:3030/admin. If everything is going to plan, you should see a login screen! The default user account is admin@example.com with a password of admin.

This development server will rebuild the site when changes are made, so you only need to reload the browser when making changes.

 # Local database setup.

If you want to develop on your local system without any Docker containers then you’ll need to set up MySQL on your host OS and run the steps below.

Remove the password

Remove the password for root by opening the MySQL shell with mysql and running:

`sql
ALTER USER 'root'@'localhost' IDENTIFIED WITH mysql_native_password BY '';
`

We do this for convenience so we can run mysql commands without providing a password each time. You can also set a password, just make sure you include it in your .env file later.

Import the latest data extract

Daily exports from the live OWID database are published here and can be used for testing:

File | Description | Size (compressed) |

——————————————————————————- | ————————————————————- | —————– |

[owid_metadata.sql.gz](https://files.ourworldindata.org/owid_metadata.sql.gz) | Table structure and metadata, everything except data_values | ~15 MB |

[owid_chartdata.sql.gz](https://files.ourworldindata.org/owid_chartdata.sql.gz) | All data values used by published visualizations | >200MB |

This script will create a database, then download and import all OWID charts and their data (might take a while!):

`bash
./db/downloadAndCreateDatabase.sh
`

Note that the data_values table will be incomplete – it will only contain data used in charts. In production, this table is >20GB (uncompressed) and contains unreviewed and undocumented data, so we currently don’t offer a full export of it.

Inspecting the database

On macOS, we recommend using [Sequel Ace](https://github.com/Sequel-Ace/Sequel-Ace) (it’s free). [DBeaver](https://dbeaver.io/) is also free, works well also and is available on more operating systems.

We also have [a rough sketch of the schema](https://user-images.githubusercontent.com/1308115/64631358-d920e680-d3ee-11e9-90a7-b45d942a7259.png) as it was on November 2019 (there may be slight changes).

 # Setting up a local TypeScript environment

This page describes how to set up the TypeScript and JavaScript tooling to build the Grapher component from source and test it in your browser on your local machine. If you also want to be able to use the admin UI to graphically configure grapher charts you will need to set up the MySQL database, by using our [docker compose MySQL setup](docker-compose-mysql.md).

This local environment requires some manual setup. For a faster way to get started have a look at the [VS Code devcontainer setup](devcontainer-setup.md).

You need the following to be able to compile the grapher project and run the tests or use our Storybook:

	[Node 18](https://nodejs.org/en/)

	[Yarn](https://yarnpkg.com/)

All further dependencies will be automatically installed by the yarn package manager.

We recommend using the [nvm Node Version manager](https://github.com/nvm-sh/nvm) and [Visual Studio Code](https://code.visualstudio.com/) as the editor.

Below are steps to set up nvm and yarn. Further down are the steps to run the tests and use the storybook for development.

Setting up Node and Yarn

MacOS specific first steps

	Install Homebrew first, follow the instructions here: <https://brew.sh/>

	Install nvm:

`sh
brew update
brew install nvm
source $(brew --prefix nvm)/nvm.sh
`

Linux/Windows specific first steps

Note: on Windows we strongly recommend using the [Windows Subsystem for Linux](https://docs.microsoft.com/en-us/windows/wsl/about) for development as all our utility scripts are written in bash.

	Run the following install script to set up NVM (from a WSL terminal when on windows):

`bash
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.1/install.sh | bash
`

Further steps for all OSs

	Clone this project if you haven’t already, and switch to the project directory

	Install Node:

`sh
nvm install
`

(this will pick up the right version from .nvmrc)

	Install yarn:

`sh
npm install -g yarn
`

	Run yarn inside the repo folder to install dependencies:

`sh
yarn
`

Running tests

To run our test suite you first need to build the TypeScript files into JavaScript and then run jest:

	Run buildTsc

`sh
yarn buildTsc
`

	Run jest

`sh
yarn testJest
`

Using storybook

Storybook allows you to interact with our Grapher and Explorer components visually in a browser and can be a great way to debug or to test new features.

	Run buildTsc

`sh
yarn buildTsc
`

	Run Storybook Server

`sh
yarn startStorybookServer
`

![Storybook](screenshots/storybook.png)

 # Development setup options

We currently have several ways of running a local development setup. If you get stuck please [create a new discussion](https://github.com/owid/owid-grapher/discussions) and we’ll try to help you with the setup.

Each option supports different features:

TypeScript compilation 🔨

At a minimum, all of the options will transpile and serve the Grapher code, which can be viewed with [Storybook](https://storybook.js.org/) for testing in a browser. This should be enough for simple bug fixes but a bit basic for more complex development.

Grapher Admin UI 🚜

This needs a working MySQL database and gives you an interactive admin UI for visually editing our charts as well as all our ~4000 charts and their data.

Full WordPress setup 🚀

This version needs a copy of our wordpress content that is currently only available for Our World In Data team members. With this you can test all parts of the publishing flow including site baking, full page previews for all content etc.

—

In increasing order of sophistication:

[Visual Studio Code development containers](devcontainer-setup.md) (🚜.)

This uses Visual Studio Code with the [remote containers extension](https://code.visualstudio.com/docs/remote/containers) and the [Docker runtime](https://www.docker.com/getting-started) installed. Everything else is automated to happen inside Docker containers so while you are developing locally, you do not have to install Node.js, MySQL, WordPress or any other dependencies on your main operating system. This also makes this setup easy to run on Windows if you are not familiar with using the Windows Subsystem for Linux.

[Local setup without MySQL](local-typescript-setup.md) (🔨)

Here you don’t need Docker and you just set up node and yarn. This only gives you Typescript compilation, but there is no further overhead for your system.

[Local setup with MySQL and Grapher admin](docker-compose-mysql.md) (🚜)

Uses Docker to run the MySQL database alongside a local setup without MySQL. This setup the one used by a lot of the OWID staff and is recommended for bigger changes to Grapher.

[Full setup with WordPress](full-wordpress-setup.md) (🚀)

This setup requires a WordPress database dump which is only available for OWID team members. As the name implies this gives you the full wordpress setup and allows work on all parts of our site publishing locally.

GitPod (🚜.)

This is a contributed web-based setup that needs no local tools whatsoever, just a [web browser pointed at GitPod](https://gitpod.io/#https://github.com/owid/owid-grapher). This is an easy way to get started, but it is not actively maintained by the OWID team so it might not be working as well as the other options. This method takes around 30 minutes to initialize.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/file.png

_static/minus.png

